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VALIDATION OF 3D SEISMIC ANALYSIS FOR A SOIL-PILE-
SUPERSTRUCTURE SYSTEM USING ADVANCED SOIL
CONSTITUTIVE MODELS

Mehdi JONEIDI', Gertraud MEDICUS?, Roshanak SHAFIEIGANJEH?, Iman
BATHAEIAN* Barbara SCHNEIDER-MUNTAUS

ABSTRACT

The simulation of the seismic response of liquefiable soils requires con-stitutive models that accurately
incorporate undrained behavior in their formulations. This paper evaluates the seismic predictive
capabilities of three advanced constitutive models: one based on boundary surface elasto-plasticity and
two on hypoplasticity. In this context, we employ an improved hypoplastic model for undrained monotonic
loading (Liao et al., 2024) combined with the intergranular strain concept (Niemunis and Herle, 1997). The
modified hypoplastic model, which accounts for the hardening rate, addresses some shortcomings of the
hypoplastic refer-ence model (von Wolffersdorff, 1996), improving its performance under seismic loading.
To assess the practical applicability of these advanced constitutive models, a 3D finite element simulation
of a soil-pile-superstructure system was conducted in ABAQUS. This system was modeled as a case study
to validate the advanced models using centrifu-ge test data. The results show that the modifications to
the hypoplastic model rectify its predictive capabilities in seismic analysis, leading to im-proved predictions
of pore water pressure accumulation and a more accurate representation of the bending moment

response in the embed-ded pile.
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LITERATURE REVIEW FOR SPT AND DCPT
CORRELATIONS

In soil-structure interaction, using an accurate
soil model is essential for pre-dicting excess
pore water pressure (EPWP) accumulation and
structural response under seismic loading. Among
advanced constitutive models, bounding surface
plasticity and hypoplasticity are two widely studied
frameworks. A well-known bounding surface
model for simulating liquefiable soils is the Simple
ANIsotropic SAND (SANISAND) plasticity proposed
by Dafalias and Manzari (2004).

Petalas et al. (2020) extended this elastoplastic
model by incorporating a fabric tensor into its
formulation. Furthermore, Yang et al. (2022)
proposed the memory surface and semifluidized
state concepts to improve the predictive abilities
of granular soils in pre- and post-liquefaction.
The second framework under consideration in
this study is hypoplasticity, which was developed
originally by Kolymbas (1977). Since then, the model
has been extended to improve its predictive
capabilities for liquefiable soils (Von Wolffersdorff
1996). Niemunis and Herle (1997) proposed the

Intergranular Strain (IGS) concept to extend the
hypoplastic model to account for cyclic loading
responses. The hypoplastic model proposed by Liao
et al. (2024) represents an improvement over the
Hypoplastic model, particularly in addressing the
limitations of the latter with respect to monotonic
undrained loading. In addition, in recent years, many
researchers have proposed extended hypoplastic
models to account for intergranular strain
anisotropy (ISA) (Fuentes & Triantafyllidis 2015)
and the semifluidized state (Liao et al 2022). The
aim of this study is to investigate the predictive
abilities of different advanced soil constitutive
models for a boundary value application, a Soil-Pile-
Superstructure Interaction (SPSI) system under
seismic loading. Using the ABAQUS/Standard finite
element program (Dassault Systemes, 2020), a 3D
numerical analysis is conducted to compare the
simulated results with a centrifuge model test
performed by Wilson (1998).

CONSTITUTIVE SOIL MODELS

In the numerical simulation, three advanced soil
models were employed to predict Nevada sand
behavior under seismic loading. The SANISAND
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model (Dafalias and Manzari 2004) is defined by
fourteen independent parameters that govern
elasticity, critical state behavior, yield surface,
plastic modulus, dilatancy, and the fabric-dilatancy
tensor (see Table 1). The hypoplastic model proposed
by Von Wolffersdorff (1996) with the IGS concept
(HP+IGS) is applied as the second model, while the
third model is a new combination of a modified
hypoplastic model that considers the hardening
(H) effect, as presented by Liao et al. (2024), with
the IGS concept (HP+IGS(H)). HP+IGS requires
thirteen material parameters while the HP+IGS(H)
introduces five additional input parameters to
the original hypoplastic framework (Table 2). More
details about the calibration of HP+IGS(H) are
presented by Joneidi et al. (2025).

CENTRIFUGE MODEL TEST

The performance of these three advanced
constitutive soil models in predicting the seismic
response of SPSI is validated through the results
of a centrifuge test conducted by Wilson (1998).
The experimental setup included various dynamic
excitation instruments, primarily strain gauge
sensors and pore pressure sensors. In this study,
the experimental results Csp3-J are used by
applying the 1995 Kobe earthquake data with peak
ground acceleration equal to 0.22g (Figure 1). To
optimize computational efficiency, the significant
duration (D5-95%) was used in the numerical
analysis.
Significant duration (2.2-10.75 s)
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Figure 1 Time history of the Kobe earth-quake

Table 1 SANISAND constant parameters for
Nevada Sand (from Joneidi et al.(2010))

Index Value [-]
Elastioity % 2000
v 0.05[-]
M, 1241
M, 071}
Critical state A, 0.027 [-]
e, 083[]
3 045[]
Yield surface m 002

Index Value [-]
hy 9.70[-]
Plastic modulus c, 102 [-]
n, 256 [
0.81[]
Dilatancy a:
n, 105 [-]
Z o 500
Fabric-Diatancy-tensor
c, 800 [-]

Table 2 Constant parameters applied in the HP+IGS
and HP+IGS (H) models for Ne-vada Sand (from
Joneidi et al.(2010))

Soilmodel | Index | HPGS H'ng*s
o, () 3r 3r
h, (MPa) 4000 4000
von n 0.30 030
Wolffersdorff e, 0.887 0.887
Hypoplasticity €4 05N 051
parameters e 5e, | l5e,
a 0.40 0.40
B 1 1
R 0.0001 0.0001
m, 5 5
IGS
parameters ahi c 2
B. 0.20 020
X 3 3
Calibrated in
this study Ay } 040,25
Parameters €p - 010
of the
modified K _ 2
model Mo - 130

FE MODEL AND SIMULATION PROCEDURE

The 3D FE model, shown in Figure 2, includes the
soil layer dimensions, pile dimensions and depth, and
element types. The aluminium pile is defined with a
mass density of 2700 kg/m?, Poisson's ratio of 0.33,
and bending stiffness of 427 MN-m?2. Soil elements
reach a maximum size of 1m at depth, with finer 25
om elements near the pile for accuracy. The pile is
divided into 336 elements, with a minimum element
size of 0.4 m. The 24.55 t superstructure is modeled
as a lumped mass at the pile head. The analysis
consists of three steps: geostatic (in situ stress),
static general (pile activation), and dynamic implicit
(seismic loading). Displacements at the bottom
surface are fully constrained, while those on lateral
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boundaries are restricted perpendicular to the
surface. To minimize boundary reflections, the two
vertical surfaces perpendicular to the shaking
direction are constrained using the Multiple Point
Constraint (MPC) command to simulate laminar
boundaries. The soil-pile interface is modeled with a
surface-to-surface master-slave approach in both
normal and tangential directions.

Superstructure mass =49.1Mg

_-yLumped mass
=" v 533m
G1
SG2efe 4 57 m
93m 5.1 m SG3
Teom SG4
o14m 565
114 m 20.6m
\J
29m t SG6
D
t=72mm
: Elementtype for soil D= 0.67 m
v

t". and pile: C3D8
Pilediameter(D= 0.67m)

Figure 2 3D Finite element model of SPSI and significant duration modelled in the finite element simulation
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with SANISAND, HP+IGS, and HP+IGS(H) models. As
shown in Figure 5 SANISAND and HP+IGS(H) capture
the overall trend more accurately, while HP+IGS
shows a larger deviation. SANISAND predicts higher
bending moments in the upper region, which can
be attributed to overprediction of EPWP in the
soil depth. In contrast, HP+IGS overpredicts the
bending moment at intermediate depths due to
its rapid pore pressure generation in the early
loading cycles. HP+IGS(H) shows good agreement
with the experimental results, especially in
controling the moment increase at shallow
depths. As it was observed in the EPWP results,
HP+IGS(H) controls the accumulation of pore
pressure in a more realistic way during the early
loading stages, resulting in a more stable bending
moment distribution. The HP+IGS model showed
full liquefication, causing more stronger softening
mechanisms and leading to a greater decrease in
soil stiffness. It can be concluded that the lateral
resistance decreases in the upper soil layers,
which explains the lower bending moment in this
region. Meanwhile, the stress-dilatation behavior
of SANISAND maintains some resistance, delaying
the onset of liquefaction and maintaining higher
bending moments at shallower depths.
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Figure 5 Comparison of bending moment envelope
with centrifuge test data

CONCLUSION

The present study evaluates the predictive
capabilities of different advanced soil constitutive
models for numerical analyses as SPSI (soil-pile-
superstructure interaction), under seismic loading.
The finite element model has been validated
with a centrifuge test previously outlined by
Wilson (1998). The accumulation of pore water
pressure and bending moment envelopes have
been demonstrated to be the reliable indicators

of the influence of soil models on the dynamic
responses of SPSI. The dynamic analysis revealed
the limitations of the hypoplastic model in
predicting pore water pressure during the initial
stage of cyclic loading. The findings showed that
the HP+IGS model exhibited an overprediction of
EPWP and demonstrated pronounced softening,
resulting in full liquefaction and a reduction in
lateral resistance. The SANISAND model, while
overestimating EPWP, exhibits residual resistance
due to stress-dilatancy, thereby maintaining higher
bending moments. The combination of a modified
hypoplastic model, as proposed by Liao et al. (2024)
with the IGS concept, has been demonstrated to
improve the control over EPWP and the variation
in bending moments, resulting in good agreement
with experimental data. It can be concluded that
the modification of the hypoplastic model to
enhance undrained monotonic behavior can be a
suitable approach to improve the cyclic responses
under seismic loading.
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