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ABSTRACT

The application of machine learning in geotechnical engineering is often hindered by the scarcity of 
high-quality, labelled datasets. To address this, we introduce GeoSyn, an open source Python-based 
tool that generates synthetic geotechnical 2D cross-sections, allowing users to define layer size and 
number, geotechnical properties and anisotropy with random fields, and boundary conditions. The 
generated data provides an effective solution for the development and training of ML applications in 
geotechnics. We demonstrate the tool’s utility through two applications. First, we show how a conditional 
Generative Adversarial Network, trained with synthetic data from GeoSyn, can interpret geotechnical 
schematisations from Cone Penetration Tests. Second, we explore how Deep Reinforcement Learning can 
be used to optimise the placement of subsequent in-situ surveys based on prior results. These examples 
illustrate how GeoSyn enables the development of ML models by leveraging large, flexible datasets to 
support decision-making in geotechnical engineering.

Keywords: synthetic data, machine learning, open source, cone penetration test (CPT), cross-section, 
random fields.

INTRODUCTION

The integration of machine learning (ML) in 
geotechnical engineering is growing rapidly, as 
shown by Liu et al. (2024) and Yaghaoubi et al. (2024). 
This growth is driven by ML’s ability to detect 
complex, non-linear relationships and identify 
patterns overlooked by traditional methods 
(Alpaydin, 2021).

ML model performance depends on three factors: 
training data, algorithms, and computational 
resources (Villalobos et al., 2024). Among these, 
data availability is often the main constraint. 
Unlike computer vision or NLP, which rely on large 
labelled datasets, geotechnical engineering is 
limited by fragmented data, making model training 
and generalisation challenging. Data collection 
is inherently difficult due to the subsurface’s 
heterogeneous, anisotropic, and irregular nature 
(Phoon & Zhang, 2023).

Geotechnical datasets are also highly contextual, 
depending on local geology, site conditions, and 
engineering practices (Phoon, Ching, & Shuku, 
2022). These factors hinder ML models from 
generalising beyond the sites on which they were 
trained. Expert judgment remains critical, as 
engineers interpret incomplete datasets and apply 
domain knowledge to compensate for missing 
information, a process not yet well integrated into 
ML workflows (Phoon, Ching, & Cao, 2022).

To address this, we present GeoSyn, an open-
source Python tool for generating synthetic 2D 
geotechnical cross-sections. Users can define 
parameters such as the number of layers, 
geotechnical properties, and anisotropy using 
random fields, creating diverse datasets for ML 
training.

This paper is structured as follows: Section 2 
explains GeoSyn’s rationale and assumptions. 
Section 3 details geometry generation. Section 
4 presents two ML applications: a conditional 
Generative Adversarial Network for geotechnical 
interpretation and a Deep Reinforcement Learning 
model for optimising in-situ survey placement. 
Section 5 discusses results and limitations, 
followed by conclusions in Section 6.

SYNTHETIC SUBSURFACE MODELLING 
FRAMEWORK

The goal of synthetic geotechnical cross-
sections is to create diverse, realistic subsurface 
representations for training and validating ML 
models. Any scalar geotechnical indicator can be 
used for schematisation.

Here, we focus on the Soil Behaviour Type Index 
(IC) proposed by Robertson (1990), derived from 
Cone Penetration Tests (CPT), widely used in 
practice, especially in the Netherlands. However, 
the methodology is not limited to this parameter 
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and can also be applied to others, such as the 
Unified Soil Classification System, undrained shear 
strength, permeability, or thermal conductivity. As 
long as the property can be expressed as a 2D field, 
the approach remains valid.

Size and format

Each synthetic cross-section is a 2D array (512 × 32 
pixels), with depth on the vertical axis and horizontal 
distance across the site. This format balances visual 
clarity, resolution, and computational efficiency for 
ML applications. Users can adjust the array size as 
needed without altering the methodology.

Geotechnical assumptions

The subsurface is represented as a layered system. 
The number of layers varies per user-defined 
parameters. While examples in this paper use up 
to five layers, the method supports any number, 
offering flexibility for a wide range of geological 
scenarios. Layers differ in thickness and geometry, 
including undulating boundaries, indentations, 
lenses, and in-filled gullies, mimicking natural 
depositional and erosional processes.

A flat ground surface is assumed, providing a 
consistent top boundary and simplifying alignment 
across synthetic cases. Within each layer, materials 
are spatially variable and anisotropic. Rather than 
uniform conditions, target properties are modelled 
as random fields, introducing heterogeneity. This 
allows lateral continuity and vertical variation, 
reflecting real-world soil behaviour and improving 
dataset realism.

CROSS-SECTION GENERATION METHODOLOGY

Synthetic cross-section generation involves two 
steps: first, creating the geometric layer structure, 
and second, assigning material properties as 
scalars or spatially variable fields (Figure 1).

User defined parameters

GeoSyn allows users to define key parameters 
directly within the Python code. These parameters 
govern how each synthetic cross-section is 
generated and offer flexibility to simulate a wide 
variety of subsurface conditions. Users can control:

	• Number of layers to be created (up to any 
desired maximum),

	• Boundary geometry through amplitude, 
wavelength, vertical shift, and phase shift of 
sine or cosine functions,

	• Assignment of geotechnical properties, 
either by filling layers with single scalar 
values (e.g., for soil classes) or using 2D 
random fields,

	• Material definitions, including distributions 
of IC values, spatial variability, and 
correlation lengths for each soil type,

	• Anisotropy settings for horizontal and 
vertical correlation lengths in the random 
fields,

	• Order of layer filling, which can follow a fixed 
sequence, a random shuffle, or a hybrid 
approach.

Layer boundary geometry

Layer boundaries are generated procedurally using 
sine or cosine functions with randomly sampled 
parameters: amplitude (vertical relief), period 
(spacing), vertical shift (overall depth), and phase 
shift (horizontal translation).

Amplitudes and wavelengths are sampled from 
PERT distributions, enabling likely (most probable) 
values while permitting variation. Vertical and 
phase shifts use uniform distributions, ensuring 
all allowable depth and position values are equally 
probable.

The layering process is sequential. Interactions 
between boundary curves, especially with high 
amplitudes or large phase shifts, may result in fewer 
distinct layers. These cases produce enclosed 
shapes like lenses, channels, or indentations, 
enhancing geological realism.

User inputs

Number 
of layers

Amplitude

Boundary1

...
Boundaryn

all
boundaries
created?

sine or 
cosine

Scalar

Random field

For each layer

Fill layers
Synthetic 

subsurface 
cross-section

False

True

Period

Vertical 

Phase shift

Mean

Std. dev.

Aniso x

Aniso z
Angle

Boundary 
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Geotechnical 
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Assignation 
order

Figure 1 Schematic representation of the 
synthetic cross-section generation process 
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Once boundaries are defined, the space between 
them is discretised into pixel-level regions 
representing individual layers. These regions 
provide spatial domains for assigning properties in 
the next stage.

Property assignment and spatial variability

Geotechnical parameters are assigned to each 
layer. For example, five representative soil 
categories were defined, each characterised by 
statistical IC-value distributions from literature. 
Sand layers have lower IC-values (1.3–2.0), while clay 
and organic layers exhibit higher values (3.0–4.0).

Within each layer, GeoSyn generates a 2D Gaussian 
random field via GSTools (Müller et al., 2022) to 
simulate pixel-level heterogeneity. Anisotropy 
is introduced by defining horizontal and vertical 
correlation lengths and rotation angles, reflecting 
depositional processes and typical soil behaviour.

The final output is a continuous IC-value field for 
each layer, merged into a single raster image 
representing the synthetic cross-section ( Figure 
2).

APPLICATIONS

To demonstrate GeoSyn’s utility, we present two 
applications: a conditional Generative Adversarial 
Network (cGAN) for stratigraphic reconstruction 
and a Deep Reinforcement Learning (DRL) model 
for optimising in-situ test planning. Both rely on 
synthetic datasets generated with GeoSyn.

Shared synthetic database

Both applications use a synthetic dataset of 
24,000 cross-sections (512×32 pixels) openly 
available on Zenodo (Campos Montero, 2024). These 
images represent IC-values and include a range of 
geological features from simple sub-horizontal 
layering to complex lenses, indentations, and buried 
channels. The dataset reflects deltaic conditions 
typical in the Netherlands and exposes ML models 
to diverse learning scenarios.

Geotechnical schematisation using conditional 
GANs.

GeoSyn was used to train SchemaGAN, a cGAN 
that infers complete subsurface schematisations 
from sparse CPT-like data (Figure 4). The model 
inputs images with <1% of original data, simulating 
real-world CPT tests, and reconstructs full cross-
sections with layer geometry and intra-layer 
variability.

GeoSyn provided ground truth images for 
training, validation, and testing. Sparse inputs 
were created by removing 99% of data from each 
synthetic image and leaving a few vertical CPT-like 
columns. These sparse images, paired with their 
full-resolution counterparts, enabled adversarial 
training: the discriminator distinguished real from 
generated cross-sections, while the generator 
redined outputs to match GeoSyn ground truths.

SchemaGAN generalised beyond simple geometries, 
reproducing complex subsurface features. It 
outperformed traditional interpolation methods 
in both synthetic and real-case tests, capturing 
smooth transitions, irregular interfaces, and 
internal heterogeneity. Full methodology and 
evaluation are detailed in Campos Montero et al. 
(2025).

Optimisation of site investigation with 
reinforcement learning

In the second application, GeoSyn trained a DRL 
agent to optimise CPT placement. The goal was 
to minimise tests while maintaining accurate 
subsurface reconstruction. Details of the model 
and architecture are provided in Zuada Coelho et 
al. (2025).

The RL environment used full-resolution GeoSyn 
images. In each episode, the agent selected in-situ 
test locations and received rewards balancing 
efficiency (fewer tests) and accuracy, measured by 
RMSE between predicted and ground truth profiles. 
Predictions used Inverse Distance Weighting (IDW) 
based on selected CPTs.

Exposure to diverse synthetic profiles with complex 
transitions (e.g., lenses, sharp boundaries) enabled 
the agent to learn where denser testing was 
needed. The DRL agent consistently outperformed 
fixed-spacing strategies, adapting test placement 
to local soil complexity and achieving better 
accuracy with fewer tests.

RESULTS AND DISCUSSION

The two ML applications highlight GeoSyn’s 
versatility in enabling data-driven approaches in 
geotechnical engineering. Both methods, though 
addressing different tasks (interpretation 
and planning), benefited from training on the 
same synthetic dataset and showed strong 
performance.

4.03.53.02.5

IC values

2.01.5

4.03.53.02.5

IC values

2.01.5
Figure 2 Synthetic models simulating the 
anisotropic spatially variable IC-values.
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SchemaGAN achieved robust results in both 
synthetic validation and real-case applications. 
It consistently outperformed conventional 
interpolation methods, capturing subtle transitions, 
irregular boundaries, and internal variability. This 
underscores the value of training ML models on 
diverse subsurface conditions, as enabled by the 
GeoSyn dataset.

The DRL agent for CPT placement also benefited 
from varied synthetic profiles. Instead of uniform 
spacing, the agent adapted test locations to soil 
complexity, achieving accurate reconstructions 
with fewer tests. The largest gains occurred in 
complex profiles with lenses, steep boundaries, and 
abrupt transitions. This demonstrates how training 
on geologically plausible schematisations supports 
both interpretation and investigation planning.

A key advantage in both cases was access to fully 
labelled data, rare in real geotechnical practice. 
For SchemaGAN, this enabled adversarial training 
with direct comparisons to ground truth. For 
the DRL agent, full IC-fields allowed precise RMSE 
calculations, providing reliable reward signals for 
learning. Without synthetic data, such models 
would have been far harder to develop and evaluate.

Notably, the dataset was not based on specific site 
investigations or calibrated with project statistics. 
Instead, it represented general deltaic conditions, 
covering a wide range of plausible scenarios. Despite 
this generality, both ML applications performed 
well, even on real-case data. This suggests general-
purpose synthetic datasets can effectively 
support early ML development, with refinements 
added later for specific geological settings.

These results show synthetic data’s potential to 
address key challenges in geotechnical ML: data 
scarcity, lack of standardisation, and validation 
difficulties. GeoSyn enables robust, reproducible, 
and scalable ML workflows.

Some limitations remain. GeoSyn assumes planar 
top surfaces, uses a fixed grid resolution, and 
focuses on scalar IC-values, which may not fully 
capture real subsurface complexity. Its outputs 
depend on how representative the user-defined 
parameters are. For larger or more heterogeneous 
sites, multiple parameter sets may be needed to 
reflect distinct geological zones.

While both ML applications generalised well, 
applying models trained on synthetic data to real 
projects still requires caution. Broader validation 
against diverse field datasets is essential to build 
confidence in these approaches.

GeoSyn’s flexibility also allows future extensions. 
Users can model different parameters (e.g., 
undrained shear strength, permeability), modify 
random field structures, or include site-specific 
geostatistical constraints. Its open-source design 
supports collaborative use in research and practice

.

CONCLUSIONS

This paper introduced GeoSyn, an open-source 
tool designed to generate synthetic geotechnical 
cross-sections for machine learning applications. 
By providing control over layering, spatial variability, 
and material properties, the tool enables the 
creation of realistic and diverse datasets that 
address a fundamental bottleneck in data-driven 
geotechnics: the scarcity of high-quality, labeled 
data.

We demonstrated its utility through two distinct 
applications: subsurface reconstruction with 
conditional GANs and in-situ test placement 
optimisation using reinforcement learning. In both 
cases, the synthetic data enabled the training of 
models that would otherwise be difficult to develop 
using only real-world data.

GeoSyn offers a flexible and reproducible 
framework to support the development and 
testing of machine learning methods in geotechnical 
engineering. Its public release aims to facilitate 
further research and collaboration in data-centric 
approaches to subsurface characterisation. By 
enabling rapid model training using synthetic data, 
GeoSyn can support early-stage site assessments, 
guide the design of investigation campaigns, or 
serve as a testing ground for new ML methods 
before applying them to costly real-world data.

DATA ACCESIBILITY

The GeoSyn tool is open access and free to explore 
at https://github.com/fabcamo/GeoSyn. The data 
based used in the given examples can be accessed 
at https://zenodo.org/records/13143431. 
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