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GEOSYN: SYNTHETIC GEOTECHNICAL CROSS-SECTIONS FOR
MACHINE LEARNING APPLICATIONS
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ABSTRACT

The application of machine learning in geotechnical engineering is often hindered by the scarcity of
high-quality, labelled datasets. To address this, we introduce GeoSyn, an open source Python-based
tool that generates synthetic geotechnical 2D cross-sections, allowing users to define layer size and
number, geotechnical properties and anisotropy with random fields, and boundary conditions. The
generated data provides an effective solution for the development and training of ML applications in
geotechnics. We demonstrate the tool's utility through two applications. First, we show how a conditional
Generative Adversarial Network, trained with synthetic data from GeoSyn, can interpret geotechnical
schematisations from Cone Penetration Tests. Second, we explore how Deep Reinforcement Learning can
be used to optimise the placement of subsequent in-situ surveys based on prior results. These examples
ilustrate how GeoSyn enables the development of ML models by leveraging large, flexible datasets to
support decision-making in geotechnical engineering.

Keywords: synthetic data, machine learning, open source, cone penetration test (CPT), cross-section,

random fields.

INTRODUCTION

The integration of machine learning (ML) in
geotechnical engineering is growing rapidly, as
shown by Liu et al. (2024) and Yaghaoubi et al. (2024).
This growth is driven by ML's ability to detect
complex, non-linear relationships and identify
patterns overlooked by traditional methods
(Alpaydin, 202T).

ML model performance depends on three factors:
training data, algorithms, and computational
resources (Villalobos et al, 2024). Among these,
data availability is often the main constraint.
Unlike computer vision or NLP, which rely on large
labelled datasets, geotechnical engineering is
limited by fragmented data, making model training
and generalisation challenging. Data collection
is inherently difficult due to the subsurface’s
heterogeneous, anisotropic, and irregular nature
(Phoon & Zhang, 2023).

Geotechnical datasets are also highly contextual,
depending on local geology, site conditions, and
engineering practices (Phoon, Ching, & Shukuy,
2022). These factors hinder ML models from
generalising beyond the sites on which they were
trained. Expert judgment remains critical, as
engineers interpret incomplete datasets and apply
domain knowledge to compensate for missing
information, a process not yet well integrated into
ML workflows (Phoon, Ching, & Cao, 2022).

To address this, we present GeoSyn, an open-
source Python tool for generating synthetic 2D
geotechnical cross-sections. Users can define
parameters such as the number of layers,
geotechnical properties, and anisotropy using
random fields, creating diverse datasets for ML
training.

This paper is structured as follows: Section 2
explains GeoSyn's rationale and assumptions.
Section 3 details geometry generation. Section
4 presents two ML applications: a conditional
Generative Adversarial Network for geotechnical
interpretation and a Deep Reinforcement Learning
model for optimising in-situ survey placement.
Section 5 discusses results and limitations,
followed by conclusions in Section 6.

SYNTHETIC SUBSURFACE MODELLING
FRAMEWORK

The goal of synthetic geotechnical cross-
sections is to create diverse, realistic subsurface
representations for training and validating ML
models. Any scalar geotechnical indicator can be
used for schematisation.

Here, we focus on the Soil Behaviour Type Index
(IC) proposed by Robertson (1990), derived from
Cone Penetration Tests (CPT), widely used in
practice, especially in the Netherlands. However,
the methodology is not limited to this parameter
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and can also be applied to others, such as the
Unified Soil Classification System, undrained shear
strength, permeability, or thermal conductivity. As
long as the property can be expressed as a 2D field,
the approach remains valid.

Size and format

Each synthetic cross-section is a 2D array (512 x 32
pixels), with depth on the vertical axis and horizontal
distance across the site. This format balances visual
clarity, resolution, and computational efficiency for
ML applications. Users can adjust the array size as
needed without altering the methodology.

Geotechnical assumptions

The subsurface is represented as a layered system.
The number of layers varies per user-defined
parameters. While examples in this paper use up
to five layers, the method supports any number,
offering flexibility for a wide range of geological
scenarios. Layers differ in thickness and geometry,
including undulating boundaries, indentations,
lenses, and in-filled gullies, mimicking natural
depositional and erosional processes.

A flat ground surface is assumed, providing a
consistent top boundary and simplifying alignment
across synthetic cases. Within each layer, materials
are spatially variable and anisotropic. Rather than
uniform conditions, target properties are modelled
as random fields, introducing heterogeneity. This
allows lateral continuity and vertical variation,
reflecting real-world soil behaviour and improving
dataset realism.

CROSS-SECTION GENERATION METHODOLOGY

Synthetic cross-section generation involves two
steps: first, creating the geometriclayer structure,
and second, assigning material properties as
scalars or spatially variable fields (Figure 1).

User defined parameters

GeoSyn allows users to define key parameters
directly within the Python code. These parameters
govern how each synthetic cross-section is
generated and offer flexibility to simulate a wide
variety of subsurface conditions. Users can control:

. Number of layers to be created (up to any
desired maximum),

. Boundary geometry through amplitude,
wavelength, vertical shift, and phase shift of
sine or cosine functions,

. Assignment of geotechnical properties,
either by filing layers with single scalar
values (e.g, for soil classes) or using 2D
random fields,

. Material definitions, including distributions
of IC values, spatial variability, and
correlation lengths for each soil type,

. Anisotropy settings for horizontal and
vertical correlation lengths in the random
fields,

. Order of layer filling, which can follow a fixed
sequence, a random shuffle, or a hybrid
approach.

Layer boundary geometry

Layer boundaries are generated procedurally using
sine or cosine functions with randomly sampled
parameters: amplitude (vertical relief), period
(spacing), vertical shift (overall depth), and phase
shift (horizontal translation).
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Figure 1 Schematic representation of the
synthetic cross-section generation process

Amplitudes and wavelengths are sampled from
PERT distributions, enabling likely (most probable)
values while permitting variation. Vertical and
phase shifts use uniform distributions, ensuring
all allowable depth and position values are equally
probable.

The layering process is sequential. Interactions
between boundary curves, especially with high
amplitudes or large phase shifts, may result in fewer
distinct layers. These cases produce enclosed
shapes like lenses, channels, or indentations,
enhancing geological realism.
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Once boundaries are defined, the space between
them is discretised into pixellevel regions
representing individual layers. These regions
provide spatial domains for assigning properties in
the next stage.

Property assignhment and spatial variability

Geotechnical parameters are assigned to each
layer. For example, five representative soil
categories were defined, each characterised by
statistical IC-value distributions from literature.
Sand layers have lower IC-values (1.3-2.0), while clay
and organic layers exhibit higher values (3.0-4.0).

Within each layer, GeoSyn generates a 2D Gaussian
random field via GSTools (Muller et al, 2022) to
simulate pixel-level heterogeneity. Anisotropy
is introduced by defining horizontal and vertical
correlation lengths and rotation angles, reflecting
depositional processes and typical soil behaviour.

The final output is a continuous IC-value field for
each layer, merged into a single raster image
representing the synthetic cross-section ( Figure
2).

Figure 2 Synthetic models simulating the
anisotropic spatially variable IC-values.

APPLICATIONS

To demonstrate GeoSyn's utility, we present two
applications: a conditional Generative Adversarial
Network (cGAN) for stratigraphic reconstruction
and a Deep Reinforcement Learning (DRL) model
for optimising in-situ test planning. Both rely on
synthetic datasets generated with GeoSyn.

Shared synthetic database

Both applications use a synthetic dataset of
24,000 cross-sections (51232 pixels) openly
available on Zenodo (Campos Montero, 2024). These
images represent IC-values and include a range of
geological features from simple sub-horizontal
layering to complex lenses, indentations, and buried
channels. The dataset reflects deltaic conditions
typical in the Netherlands and exposes ML models
to diverse learning scenarios.

Geotechnical schematisation using conditional
GANSs.

GeoSyn was used to train SchemaGAN, a cGAN
that infers complete subsurface schematisations
from sparse CPT-like data (Figure 4). The model
inputs images with <1% of original data, simulating
real-world CPT tests, and reconstructs full cross-
sections with layer geometry and intra-layer
variability.

GeoSyn provided ground truth images for
training, validation, and testing. Sparse inputs
were created by removing 99% of data from each
synthetic image and leaving a few vertical CPT-like
columns. These sparse images, paired with their
full-resolution counterparts, enabled adversarial
training: the discriminator distinguished real from
generated cross-sections, while the generator
redined outputs to match GeoSyn ground truths.

SchemaGAN generalised beyond simple geometries,
reproducing complex subsurface features. It
outperformed traditional interpolation methods
in both synthetic and real-case tests, capturing
smooth transitions, irregular interfaces, and
internal heterogeneity. Full methodology and
evaluation are detailed in Campos Montero et al.
(2025).

Optimisation of site investigation with
reinforcement learning

In the second application, GeoSyn trained a DRL
agent to optimise CPT placement. The goal was
to minimise tests while maintaining accurate
subsurface reconstruction. Details of the model
and architecture are provided in Zuada Coelho et
al. (2025).

The RL environment used full-resolution GeoSyn
images. In each episode, the agent selected in-situ
test locations and received rewards balancing
efficiency (fewer tests) and accuracy, measured by
RMSE between predicted and ground truth profiles.
Predictions used Inverse Distance Weighting (IDW)
based on selected CPTs.

Exposure to diverse synthetic profiles with complex
transitions (e.g., lenses, sharp boundaries) enabled
the agent to learn where denser testing was
needed. The DRL agent consistently outperformed
fixed-spacing strategies, adapting test placement
to local soil complexity and achieving better
accuracy with fewer tests.

RESULTS AND DISCUSSION

The two ML applications highlight GeoSyn's
versatility in enabling data-driven approaches in
geotechnical engineering. Both methods, though
addressing  different  tasks (interpretation
and planning), benefited from training on the
same synthetic dataset and showed strong
performance.
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SchemaGAN achieved robust results in both
synthetic validation and real-case applications.
It consistently outperformed conventional
interpolation methods, capturing subtle transitions,
irregular boundaries, and internal variability. This
underscores the value of training ML models on
diverse subsurface conditions, as enabled by the
GeoSyn dataset.

The DRL agent for CPT placement also benefited
from varied synthetic profiles. Instead of uniform
spacing, the agent adapted test locations to soil
complexity, achieving accurate reconstructions
with fewer tests. The largest gains occurred in
complex profiles with lenses, steep boundaries, and
abrupt transitions. This demonstrates how training
on geologically plausible schematisations supports
both interpretation and investigation planning.

A key advantage in both cases was access to fully
labelled data, rare in real geotechnical practice.
For SchemaGAN, this enabled adversarial training
with direct comparisons to ground truth. For
the DRL agent, full IC-fields allowed precise RMSE
calculations, providing reliable reward signals for
learning. Without synthetic data, such models
would have been far harder to develop and evaluate.

Notably, the dataset was not based on specific site
investigations or calibrated with project statistics.
Instead, it represented general deltaic conditions,
covering a wide range of plausible scenarios. Despite
this generality, both ML applications performed
well, even on real-case data. This suggests general-
purpose synthetic datasets can effectively
support early ML development, with refinements
added later for specific geological settings.

These results show synthetic data’s potential to
address key challenges in geotechnical ML: data
scarcity, lack of standardisation, and validation
difficulties. GeoSyn enables robust, reproducible,
and scalable ML workflows.

Some limitations remain. GeoSyn assumes planar
top surfaces, uses a fixed grid resolution, and
focuses on scalar IC-values, which may not fully
capture real subsurface complexity. Its outputs
depend on how representative the user-defined
parameters are. For larger or more heterogeneous
sites, multiple parameter sets may be needed to
reflect distinct geological zones.

While both ML applications generalised well,
applying models trained on synthetic data to real
projects still requires caution. Broader validation
against diverse field datasets is essential to build
confidence in these approaches.

GeoSyn's flexibility also allows future extensions.
Users can model different parameters (esg,
undrained shear strength, permeability), modify
random field structures, or include site-specific
geostatistical constraints. Its open-source design
supports collaborative use in research and practice

CONCLUSIONS

This paper introduced GeoSyn, an open-source
tool designed to generate synthetic geotechnical
cross-sections for machine learning applications.
By providing control over layering, spatial variability,
and material properties, the tool enables the
creation of realistic and diverse datasets that
address a fundamental bottleneck in data-driven
geotechnics: the scarcity of high-quality, labeled
data.

We demonstrated its utility through two distinct
applications: subsurface reconstruction with
conditional GANs and in-situ test placement
optimisation using reinforcement learning. In both
cases, the synthetic data enabled the training of
models that would otherwise be difficult to develop
using only real-world data.

GeoSyn offers a flexible and reproducible
framework to support the development and
testing of machine learning methods in geotechnical
engineering. Its public release aims to facilitate
further research and collaboration in data-centric
approaches to subsurface characterisation. By
enabling rapid model training using synthetic data,
GeoSyn can support early-stage site assessments,
guide the design of investigation campaigns, or
serve as a testing ground for new ML methods
before applying them to costly real-world data.

DATA ACCESIBILITY

The GeoSyn tool is open access and free to explore
at https://github.com/fabcamo/GeoSyn. The data
based used in the given examples can be accessed
at https://zenodo.org/records/13143431.
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