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DEVELOPMENT AND ADVANCEMENT OF A GEOTECHNICAL
SOFTWARE BASED ON THE FINITE ELEMENT METHOD

Viacheslav POLUNIN'

ABSTRACT

This paper examines the application of the Finite Element Method (FEM) for the numerical modeling of
soil foundations, which has become the most widely used method in geotechnical engineering practice.
The work emphasizes the importance of selecting the appropriate soil model in the context of weak soails,
particularly in the central part of Saint Petersburg, where buildings sensitive to uneven deformations are
frequently found. It investigates the effectiveness of existing nonlinear soil models, such as Modified Cam-
Clay, Soft Soil, and Hardening Soil, among others, as well as the necessity of adapting custom models for
FEM applications. The study systematizes and expands upon previous research in this field, focusing on key
aspects of finite element analysis, including the assembly of local stiffness matrices and the consideration
of boundary conditions. Based on theoretical principles and developed algorithms, an “alpha” version of
a computational program enabling efficient linear, transient, and nonlinear analyses using the Finite
Element Method was introduced. The findings aim to enhance both education and practical applications in
geotechnical design, contributing to the advancement of this area of scientific and engineering research.

Keywords: numerical simulation in geotechnical engineering, dynamic problem, finite element method,

transient problem.

INTRODUCTION

Numerical modeling is indispensable for designing
structures with significant underground elements
or in complex geotechnical conditions, where
accurate prediction of soil-structure interaction
is critical for safety and cost-effectiveness.
While commercial packages (e.g., Plaxis, Midas
GTS NX) offer robust solutions, their accessibility
is often hindered by high licensing costs and
regional restrictions. Open-source alternatives,
conversely, demand extensive expertise beyond
core geotechnical engineering, including advanced
programming and applied mathematics, presenting
a significant barrier for practitioners.

To address this gap, this paper presents the
development and key advancements of* specialized
geotechnical software based on the Finite
Element Method (FEM). The core innovations and
contributions of this research are as follows:
First, an integrated computational framework
specifically designed for geotechnical analysis
has been developed. This solution bridges the gap
between the complex requirements of open-
source tools and the limitations of commercial
software. Second, optimized algorithms have been
implemented to enhance computational efficiency
for typical geotechnical problems. Third, a modular
architecture has been created, enabling future

customization and extension by engineers without
advanced programming skills.

As the developed software comprises numerous
interconnected modules, this paper focuses
primarily on presenting and detailing its dynamic
analysis module. Details regarding the development
of other software components are provided in
associated publications. Validation of the dynamic
analysis module against benchmark problems
and comparison with established solutions
demonstrate its accuracy and practical utility.

The developed software offers distinct advantages:
it provides a cost-effective alternative to high-
priced commercial software while significantly
lowering the technical barrier compared to raw
open-source projects.

Due to its modular architecture and purpose-
built design, the system enables specialists to
not only perform advanced FEM computations
(including dynamic simulations) but also customize
it for specific applications. For instance, users can
integrate custom soil models or modify solution
algorithms. These capabilities prove particularly
critical when addressing non-standard geotechnical
scenarios where commercial software often lacks
sufficient flexibility.
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This work advances accessible, adaptable
computational tools for the geotechnical
engineering community, with a specific emphasis on
dynamic modeling capabilities.

METHODS

FEM's construction applications originated with
Galerkin (1915), Zienkiewicz (1967), and Bathe (1982).
For geotechnics, key contributions came from
Fadeev (1987) and Potts & Zdravkovié's theoretical
work (2001). The literature mentioned above
describes physical equations, their transition to
matrix form, and subsequently to systems of linear
algebraic equations. However, such literature often
lacks sufficient detail, resulting in significant effort
required to practically implement the developments
presented. It is particularly important to describe
in detail, with examples, how variables and matrix
expressions are obtained, boundary conditions are
accounted for, and other aspects.

It is important to note that geotechnics
encounters almost all types of physical processes
and mathematical methods for their description:
linear problems, stationary, non-linear, non-
stationary, and their combinations. A detailed
description of solving filtration problems is
provided in (Polunin et al., 2023). The solution of non-
stationary temperature problems is presented
in (Sakharov et al, 2023). The solution of linear-
elastic stress-strain state problems is described
in (Polunin, 2023). The methodology and algorithm
for solving non-linear problems are presented in
(Polunin et al.,, 2023).

This paper considers the solution of dynamics
problems in a different formulation. The general
view of the computational scheme is presented in
Figure 1.
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Figure 1 Calculation scheme of the test problem

A plane strain problem with dimensions of 40 by
20 m is considered, with a dynamic load of 200
kPa applied over a 2 m width at the center of the
computational scheme. The frequency of impact
is set at 1 Hz with a sinusoidal pattern, and the
calculation time is 1 second. System damping and
“viscous” boundaries were not considered; the
problem is solved in its basic formulation. The static
boundary conditions of the problem are standard:
the lateral boundaries are fixed along the X-axis,

and the lower boundary is fixed along both X and
Y axes. Additional dynamic boundary conditions
are not applied. The soil density is 2 t/m°. The
elastic modulus is 10 MPa; Poisson’s ratio is 0.2.
The numerical model incorporates two monitoring
points for comparative analysis. Monitor Point 1is
situated at coordinates (xy) = (2m,2m) relative to
the load boundary. Monitor Point 2 is positioned
18.5m horizontally from the load boundary at ground
level. These strategic locations serve as benchmark
positions for validating displacement calculations
against equivalent simulations performed using the
Plaxis 2D finite element software package, thereby
enabling quantitative verification of the developed
computational framework.

The fundamental equation
represented under position 1:

of dynamics is

2
M‘%-%—C‘(Z—?-#K-u:F(t) m
Where Mis amass matrix; uis avector displacement;
C is a damping matrix; K is a stiffness matrix; F(t) is
a- time-dependent external force vector .

Since a simple case without damping is being
considered, equation 1takes the form:
2

M<%+K-u=F(t) @
The mass matrix for a three-node reference finite
element (unit triangle), utilizing a data structure
where the displacement vector's first row
corresponds to nodal displacement along the x-axis
and the second row to displacement along the
y-axis, is formulated as follows:
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(©)

p is a density, t/m?; Se is a finite element area, m?.

The formulation of the stiffness matrix and right-
hand side vector is presented in detail, while the
assembly procedure for the global stiffness matrix
and global right-hand side vector is thoroughly
documented in the research paper (Polunin, 2023).

The second derivative of the displacement vector
can be approximated using the central finite
difference scheme:

d%u Wit1 — 2u; + uig

dz At? (4)
The system is assumed to be at rest at the initial
time point (t=0), meaning the displacement vector at
stepiandat the preceding step equal zero. Following
a series of mathematical transformations, the
computation of the displacement vector can be
expressed as:

w1 = 2u; — w1 + ACM N(F - K,) )
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Python was chosen as the development language
for computational modules. This is because the
language is relatively easy to learn and offers
many ready-made libraries for solving systems of
linear algebraic equations and visualizing data and
calculation results. NumPy was used for matrix
operations; Matplotlibb for visualization; and the
open-source package GMSH for finite element
mesh generation.

RESULTS

Comparative analyses were conducted using both
the Plaxis 2D commercial software package and the
algorithm developed in this research. The following
figures present displacement isoline contours at
various time intervals, generated by Plaxis 2D and
the Python implementation respectively. Figure
2 shows the contours of the total displacement
vector in the computational model at time 0.25
s; Figure 3 shows them at time 0.625 s. Figure 4
ilustrates comparative time-displacement curves
for monitoring points 1 and 2 along the Y-axis, as
computed by both Plaxis 2D and the developed
Python algorithm.
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Figure 2 Displacement contours at time 0.25 s. a)
Plaxis 2D; b) Python.
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Figure 3 Displacement contours at time 0.625 s. a)
Plaxis 2D; b) Python.
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Figure 4 Displacements of points 1and 2 along the
Y-axis as a function of time

Figure 5 presents the corresponding temporal
evolution of horizontal (X-axis) displacements
for the same monitoring points throughout the
simulation period.

00020

plaxis 2d point Tux
000 T === python 2d point Tux
plaxis 2d point 2 ux
= = = = python2dpaint 2 ux

0,0010

-0,0005

-0,0010

-0,0015 3
Times

Figure 5 displacements of points 1and 2 along the
X-axis as a function of time.

0
Q0
c
{=
[4]
Q
L
[]
(9]
‘o
£
‘o
£
3
T
o
b

=)




Viacheslav POLUNNN - Development and advancement of a geotechnical software based on the finite

element method

ANALYSIS AND DISCUSSION

Upon critical examination of the obtained
computational outcomes, the following conclusions
can be drawn:

The results demonstrate both qualitative
and quantitative convergence between the
developed algorithm and the reference software
implementation.

Quantitative discrepancies between maximum and
minimum displacement values are summarized in
Table 1, providing a statistical basis for validation
assessment.

Table 1 Discrepancy between the calculated results

Point Ty x 2y 2x
Pl max 0.0105 000047 | 000122 | 0.00062
Py_max 0.0104 0.0005 0.0012 0.00062
A -06 07 20 -17
PLmin -0012 -0.0004 | -00007 | -0.0004
Py_min -0012 00006 | -00007 | -0.0004
A 13 20 00 -02

The observed deviations in computational

results may be attributed to the implementation
of lower-order finite elements (three-node
triangular elements versus six-node triangular
elements utilized in Plaxis). Additionally, temporal
discretization methodology differs between
implementations: while Plaxis employs the Newmark
integration scheme, the present work utilizes a
simplified explicit finite-difference time-stepping
algorithm.

Subsequent development phases for this
computational module will incorporate Rayleigh
damping characteristics of soil materials and
implement  specialized boundary conditions
specifically designed for geotechnical dynamic
analysis problems .
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